Hodnotenie:
Kniha je oceňovaná pre svoj bohatý obsah slávnych geometrických problémov a je považovaná za cenný zdroj informácií pre tých, ktorí majú záujem prehĺbiť svoje znalosti geometrie. Hoci ponúka pútavé problémy a zasvätené vysvetlenia, pre svoju náročnosť nemusí byť vhodná pre študentov stredných škôl.
Výhody:⬤ Obsahuje slávne a historicky významné geometrické problémy.
⬤ Pútavé cvičenia, ktoré pomáhajú prehĺbiť porozumenie.
⬤ Dobre usporiadaná štruktúra a dobré vysvetlenia pre tých, ktorí poznajú pokročilé pojmy.
⬤ Cenovo výhodné a vydavateľom dobre zabalené.
⬤ Nevhodné pre stredoškolákov kvôli zložitosti a pokročilým predpokladom.
⬤ Niektorí čitatelia ju považujú za hutnú a náročnú, s vynechanými rovnicami.
⬤ Podľa niektorých ohlasov by sa prezentácia mohla zlepšiť.
⬤ Niekoľko používateľov ju nepovažovalo za vôbec užitočnú.
(na základe 14 čitateľských recenzií)
Famous Problems of Geometry and How to Solve Them
Trvalo dve tisícročia, kým sa dokázalo nemožné.
Teda dokázať, že nie je možné vyriešiť niektoré slávne grécke problémy gréckym spôsobom (len pomocou pravítka a kompasu). V procese pokusov o kvadratúru kruhu, trizektúru uhla a zdvojenie kocky sa urobili ďalšie matematické objavy.
Pre tieto zdanlivo triviálne odbočky sa zamestnali niektoré veľké matematické mozgy histórie. Prečo sa Archimedes, Euklides, Newton, Fermat, Gauss, Descartes a mnohí ďalší venovali týmto hlavolamom? Táto kniha aktívne približuje čitateľom historické a moderné postupy riešenia týchto problémov a novú matematiku, ktorú bolo treba vymyslieť, aby sa ich podarilo vyriešiť.
Hľadanie kruhu vo štvorci, triasového uhla, zdvojenej kocky a ďalších konštrukcií s priamkou a kompasom možno vhodne rozdeliť do troch období: od Grékov cez kalkulus a analytickú geometriu v 17. storočí až po sofistikované iracionálne a transcendentálne čísla v 19. storočí. Učiteľ matematiky Benjamin Bold venuje každému problému jednu kapitolu a ďalšie kapitoly sa venujú komplexným číslam a analytickým kritériám konštruovateľnosti. Autor sprevádza amatérskych priamočiarych hlavolamárov do týchto fascinujúcich komplexov komentárom a súbormi úloh za každou kapitolou. Určité vedomosti z matematiky umožnia čitateľom sledovať problémy.
Úplné riešenia sú uvedené na konci knihy.
Túto knihu ocenia študenti matematiky a geometrie, každý, kto by chcel vyzvať Grékov na ich vlastnú hru a zároveň preniknúť do vývoja modernej matematiky. Zistite, ako sa Gauss rozhodol, že sa matematika stane jeho životným dielom, keď sa jedného rána zobudil s vidinou 17-stranného mnohouholníka v hlave.
Objavte zásadný význam eπ.
I = -1, jeden z najúžasnejších vzorcov v celej matematike. Tieto slávne problémy, prehľadne vysvetlené a znázornené, ohromia a poučia zvedavých študentov a znalcov matematiky.
© Book1 Group - všetky práva vyhradené.
Obsah tejto stránky nesmie byť kopírovaný ani použitý čiastočne alebo v celku bez písomného súhlasu vlastníka.
Posledná úprava: 2024.11.13 22:11 (GMT)